
Constructive Computer Architecture

Multithreaded Programming:

Synchronization and Sequential
Consistency

Thomas – EPFL

Slides adapted from 6.192 Spring '23 with Arvind (MIT) +
contributions from Tushar Krishna (Georgia Tech)

April 4, 2024 L12-1

Processes and threads

April 4, 2024 L12-2

Code

Data

Code

Data

Code

Data

Code

Data

PCB PCB PCB PCB

Green Thread

Process

PCB: Process
Control Block
(PC, stack pointer, ..)

Software

Hardware

CPU A CPU B CPU C

What is SMT?

What is Multiprocessing?

Running multiple
threads concurrently
on same CPU

Running multiple threads concurrently over multiple CPUs

Processes and threads

April 4, 2024 L12-3

CodeData

Reg
+
PC

Thread
"Software"

Hardware

CPU A CPU B CPU C

What is SMT?

What is Multiprocessing?

Running multiple
threads concurrently
on same CPU

Running multiple threads concurrently over multiple CPUs

Reg
+
PC

Reg
+
PC

Reg
+
PC

Reg
+
PC

Reg
+
PC

Symmetric Multiprocessors

All memory is
equally accessible to all
processors

Any processor can do any
I/O operation

Memory

Processor-Memory Interconnect

bridge

Processor
+ cache

I/O controller

Graphics
output

I/O controller I/O controller

I/O Interconnect

Networks

Processor
+ cache

April 4, 2024 L12-4

Heterogeneous Systems

In modern Systems-on-a-Chip
(SoC) there are many processors
to perform specific functions;
they are programmed in an ad-
hoc manner

Memory

Processor-Memory Interconnect

bridge

Processor
+ cache

Proc + Mem

Graphics
output

Proc + Mem Proc + Mem

I/O Interconnect

Networks

Processor
+ cache

minions

April 4, 2024 L12-5

Multithreaded Programming
Multiple independent sequential threads which
compete for shared resources such as memory

and I/O devices

◼ usually managed by the operating system

◼ OS often runs multiple threads for efficient
management of resources even on a single processor

Multiple cooperating sequential threads, which

communicate via the shared memory system,
i.e., shared data structures

◼ an application can often be completed faster by
decomposing it into multiple threads and running
them on multiprocessors

April 4, 2024 L12-6

Focus of Today’s Lecture

Supporting Multi-threaded
Programming

◼ Synchronization

◼ Sequential Consistency

April 4, 2024 L12-7

Focus of Today’s Lecture

Supporting Multi-threaded
Programming

◼ Synchronization

◼ Sequential Consistency

April 4, 2024 L12-8

Synchronization
Need for synchronization arises
whenever there are parallel processes or

threads in a system

producer

consumer

fork

join

P1 P2
◼ Forks and Joins: A parallel

process/thread may want to wait until
several events have occurred

◼ Producer-Consumer: A consumer
process/thread must wait until the
producer process has produced data

◼ Mutual Exclusion: Operating system has
to ensure that a resource is used by only
one process/thread at a given time

April 4, 2024 L12-9

Thread-safe programming
Multithreaded programs can be executed on a
uniprocessor by timesharing

◼ Each thread is executed for a while (timer interrupt)
and then the OS switches to another thread,
repeatedly

Thread-safe multithreaded programs behave
the same way regardless of whether they are
executed on multiprocessors or a single

processor

In the rest of lecture we will assume that each
thread has its own processor to run

April 4, 2024 L12-10

Example: Producer-Consumer
communicate via a FIFO

Producer posting Item x:
 Load Rtail, tail
 Store (Rtail), x
 Rtail=Rtail+1
 Store tail, Rtail

Consumer:
 Load Rhead, head
spin: Load Rtail, tail
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store head, Rhead

 process(R)

Producer Consumer
tail head

Rtail Rtail Rhead R

Assume unbounded FIFO

dest addr

src addr
dest addr
in a reg

April 4, 2024 L12-11

Multithreaded programming
is subtle

Producer posting Item x:
 Load Rtail, tail
 Store (Rtail), x
 Rtail’=Rtail+1
 Store tail, Rtail’

Consumer:
 Load Rhead, head
spin: Load Rtail, tail
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store head, Rhead

 process(R)

Producer Consumer
tail head

Rtail Rtail Rhead R

reordering the stores can cause
the consumer to see stale data

April 4, 2024 L12-12

Rtail’

What is wrong with this code?

Multiple Consumers

Producer posting Item x:
 Load Rtail, tail
 Store (Rtail), x
 Rtail=Rtail+1
 Store tail, Rtail

Consumer:
 Load Rhead, head
spin: Load Rtail, tail
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store head, Rhead

 process(R)

What is wrong with this code?

tail head
Producer

Rtail

Consumer
1

R Rhead

Rtail

Consumer
2

R Rhead

Rtail

The same item may get consumed
by both consumers!

Critical section:
Needs to be executed atomically
by one consumer  locks

April 4, 2024 L12-13

Locks or Semaphores
E. W. Dijkstra, 1965

Lock s has two values:

◼ Unlocked (s=0): means that no process has the lock

◼ Locked (s=1): means that exactly one process has
the lock and it can access the critical section

Once a process successfully acquires a lock, it
executes the critical section and then sets s to
zero by releasing the lock

The execution of the critical
section is protected by locks;
Only one process can hold the
lock at a time

Process i
acquire(s)
 <critical section>
release(s)

Implementing locks is quite difficult; ISAs provide
special atomic instructions to implement locks

April 4, 2024 L12-14

Atomic read-modify-write
instructions

Test&Set m, R:
R  M[m];
if R==0 then

 M[m]  1;

Swap m, R:
Rt  M[m];
M[m]  R;
R  Rt;

m is a memory location, R is a register

Location m can be set to one
only if it contains a zero; the
old value is returned in R

Location m is first read and
then set to the new value; the
old value is returned in R

April 4, 2024 L12-16

Multiple Consumers
Example using the Test&Set Instruction

Critical
Section

lock: Test&Set mutex, Rtemp

 if (Rtemp==1) goto lock
 Load Rhead, head
spin: Load Rtail, tail
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store head, Rhead
unlock: Store mutex, 0
 process(R)

A consumer acquires the lock (mutex) before
reading the head value

April 4, 2024 L12-17

Synchronization and
Concurrency

April 4, 2024 L12-18

T1 is active and executing code inside its critical section.

T2 is active and executing code outside its critical section.

T3 is active and executing code outside its critical section.

T4 is blocked and waiting to get into its critical section.

◼ (It will get in once the lock is released by T1).

Critical section Critical section Critical section Critical section

T1 T2 T3 T4

Programming Challenges

How to decide what part of code is the

“critical section”?

◼ What happens if critical section is too large?

Our example was written assuming that the
instructions per thread are executed in order

◼ An architecture may execute instructions out of order to
gain higher performance

  Gives rise to memory model issues

April 4, 2024 L12-19

Implementation Challenges

Atomic instructions (read-modify-write) are

quite disruptive in pipelined machines

What if the process stops or is swapped out
while in the critical section?

◼ Lock may never get released! Every thing stops

◼ More sophisticated programming is needed to deal with
such eventualities

April 4, 2024 L12-20

Focus of Today’s Lecture

Supporting Multi-threaded
Programming

◼ Synchronization

◼ Sequential Consistency

April 4, 2024 L12-21

Memory Ordering Nuances
Concurrent tasks: T1, T2
Shared variables: X, Y (initially X = 0, Y = 0)

T1: T2:
Store X, 1 (X = 1) Load R1, Y
Store Y, 2 (Y = 2) Store Y’, R1 (Y’= Y)
 Load R2, X
 Store X’, R2 (X’= X)

What are the legitimate answers for X’ and Y’ ?

 (X’,Y’)  {(1,2), (0,0), (1,0), (0,2)} ?

If y is 2 then x cannot be 0

April 4, 2024 L12-22

Sequential Consistency
A Memory Model

“A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”
 Leslie Lamport

Sequential Consistency =
 arbitrary order-preserving interleaving
 of memory references of sequential programs

M

P P P P P P

April 4, 2024 L12-23

Why SC may be violated
Sequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor
program dependencies ()
 What are these in our example ?

T1: T2:
Store X, 1 (X = 1) Load R1, Y
Store Y, 2 (Y = 2) Store Y’, R1 (Y’= Y)
 Load R2, X
 Store X’, R2 (X’= X)

additional SC requirements ()

High-performance processor implementations often
violate SC by not enforcing the extra dependencies
required by SC

Example Store Buffers

April 4, 2024 L12-24

Store Buffers
A processor considers a Store to have
been executed as soon as it is stored
in the Store buffer, that is, before it is
put in memory

A load can read values from the local
store buffer (forwarding)

P

Memory

P

Loads/Stores can appear to be ordered
differently to other processors
 ==> violate SC

Some systems only enforce FIFO ordering for
the stores to the same address while
moving a store from store buffer to memory

April 4, 2024 L12-25

• Sequential consistency:

• With FIFO store buffers:

• With non-FIFO store buffers:

 Process 1 Process 2

 Store X, 1; Load R1, Y;

 Store Y, 2; Load R2, X;

Violations of SC
Example 1

Question: Is it possible that R1=2 but R2=0?

No

No

April 4, 2024 L12-26

Yes

Initially, all memory

locations contain zeros

• Sequential consistency:

• Suppose Stores don’t leave the store buffers before
the Loads are executed:

 Process 1 Process 2

 Store X, 1; Store Y, 2;

 Load R1, Y; Load R2, X;

Violations of SC
Example 2

Initially, all memory

locations contain zeros

Question: Is it possible that R1=0 and R2=0?

No

Yes !

April 4, 2024 L12-27

A Practical Producer-
Consumer Example continued

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 Rtail=Rtail+1
 Store tail, Rtail

Consumer:
 Load Rhead, head
spin: Load Rtail, tail
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store head, Rhead

 process(R)
Can the tail pointer get updated
before the item x is stored?

Programmer assumes that if 3 happens after 2, then 4
happens after 1.

Problem sequences:
 2, 3, 4, 1
 4, 1, 2, 3

1

2

3

4

April 4, 2024 L12-28

How do we determine which
sequences are allowed?

Memory Consistency Model

In practice, processors use “weaker” memory
models than SC

◼ Why?

The “Memory Consistency Model” (aka
Memory Model) describes what values can be

returned by load instructions across
concurrent processes/threads

April 4, 2024 L12-29

TSO: A memory model for
machines with store buffers

A store first goes into the Store buffer (SB)

A load reads the youngest corresponding entry from SB
before reading the memory

A store is dequeued from the SB in FIFO order to update
the monolithic memory (background rule)

A commit fence stalls local execution until SB is empty

Monolithic memory

…

Processor

Reg state

Processor

Reg state

Store
buffer

Store
buffer

simple and
vendor
independent

St a v

<a,v>

<a,v>

TSO allows loads to overtake stores

April 4, 2024 L12-30

Memory Fences
Instructions to sequentialize memory accesses

Processors which do not support SC memory model provide
memory fence instructions to force the serialization of
memory accesses as needed

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 FenceSS

 Rtail=Rtail+1
 Store tail, Rtail

Consumer:
 Load Rhead, (head)
spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 FenceLL

 Load R, (Rhead)
 Rhead=Rhead+1
 Store head, Rhead

 process(R)
ensures that tail ptr
is not updated before
x has been stored

ensures that R is
not loaded before
x has been stored

RISC-V has one instruction called “fence”

April 4, 2024 L12-31

Memory Model Challenges
Architectural optimizations that are correct for
uniprocessors, often violate sequential

consistency and result in a new memory
model for multiprocessors

Memory model issues are subtle and
contentious

◼ x86 ISA uses TSO, whose definition is easy to
understand and unambiguous

◼ ISAs for ARM, PowerPC etc. use weaker memory
models and even experts don’t agree on their
definitions

April 4, 2024 L12-32

SC and Caches
Caches present a similar
problem as store buffers –

stores in one cache will
not be visible to other
caches automatically

Cache problem is solved

differently – caches are
kept coherent

P

Cache

Memory

P

Cache

How to build coherent caches is the topic of next lecture

April 4, 2024 L12-33

	Slide 1
	Slide 2: Processes and threads
	Slide 3: Processes and threads
	Slide 4: Symmetric Multiprocessors
	Slide 5: Heterogeneous Systems
	Slide 6: Multithreaded Programming
	Slide 7: Focus of Today’s Lecture
	Slide 8: Focus of Today’s Lecture
	Slide 9: Synchronization
	Slide 10: Thread-safe programming
	Slide 11: Example: Producer-Consumer communicate via a FIFO
	Slide 12: Multithreaded programming is subtle
	Slide 13: Multiple Consumers
	Slide 14: Locks or Semaphores E. W. Dijkstra, 1965
	Slide 16: Atomic read-modify-write instructions
	Slide 17: Multiple Consumers Example using the Test&Set Instruction
	Slide 18: Synchronization and Concurrency
	Slide 19: Programming Challenges
	Slide 20: Implementation Challenges
	Slide 21: Focus of Today’s Lecture
	Slide 22: Memory Ordering Nuances
	Slide 23: Sequential Consistency A Memory Model
	Slide 24: Why SC may be violated
	Slide 25: Store Buffers
	Slide 26: Violations of SC Example 1
	Slide 27: Violations of SC Example 2
	Slide 28: A Practical Producer-Consumer Example continued
	Slide 29: Memory Consistency Model
	Slide 30: TSO: A memory model for machines with store buffers
	Slide 31: Memory Fences Instructions to sequentialize memory accesses
	Slide 32: Memory Model Challenges
	Slide 33: SC and Caches

