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Processes and threads
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Processes and threads
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Symmetric Multiprocessors

All memory is 
equally accessible to all 
processors

Any processor can do any 
I/O operation
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Heterogeneous Systems

In modern Systems-on-a-Chip 
(SoC) there are many processors 
to perform specific functions; 
they are programmed in an ad-
hoc manner

Memory

Processor-Memory Interconnect

bridge

Processor
+ cache

Proc + Mem

Graphics
output

Proc + Mem Proc + Mem

I/O Interconnect

Networks

Processor
+ cache

minions

April 4, 2024 L12-5



Multithreaded Programming
Multiple independent sequential threads which 
compete for shared resources such as memory 

and I/O devices  

◼ usually managed by the operating system

◼ OS often runs multiple threads for efficient 
management of resources even on a single processor

Multiple cooperating sequential threads, which 

communicate via the shared memory system, 
i.e., shared data structures

◼ an application can often be completed faster by 
decomposing it into multiple threads and running 
them on multiprocessors
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Focus of Today’s Lecture

Supporting Multi-threaded 
Programming

◼ Synchronization

◼ Sequential Consistency
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Synchronization
Need for synchronization arises 
whenever there are parallel processes or 

threads in a system

producer

consumer

fork

join

P1 P2
◼ Forks and Joins: A parallel 

process/thread may want to wait until 
several events have occurred

◼ Producer-Consumer: A consumer 
process/thread must wait until the 
producer process has produced data

◼ Mutual Exclusion: Operating system has 
to ensure that a resource is used by only 
one process/thread at a given time
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Thread-safe programming
Multithreaded programs can be executed on a 
uniprocessor by timesharing 

◼ Each thread is executed for a while (timer interrupt) 
and then the OS switches to another thread, 
repeatedly 

Thread-safe multithreaded programs behave 
the same way regardless of whether they are 
executed on multiprocessors or a single 

processor

 
In the rest of lecture we will assume that each 
thread has its own processor to run

April 4, 2024 L12-10



Example: Producer-Consumer 
communicate via a FIFO 

Producer posting Item x:
 Load Rtail, tail
 Store (Rtail), x
 Rtail=Rtail+1
 Store tail, Rtail

Consumer:
 Load Rhead, head
spin: Load Rtail, tail
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store head, Rhead

 process(R)

Producer Consumer
tail head

Rtail Rtail Rhead R

Assume unbounded FIFO

dest addr

src addr
dest addr
in a reg
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Multithreaded programming 
is subtle

Producer posting Item x:
 Load Rtail, tail
 Store (Rtail), x
 Rtail’=Rtail+1
 Store tail, Rtail’

Consumer:
 Load Rhead, head
spin: Load Rtail, tail
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store head, Rhead

 process(R)

Producer Consumer
tail head

Rtail Rtail Rhead R

reordering the stores can cause 
the consumer to see stale data
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What is wrong with this code?



Multiple Consumers

Producer posting Item x:
 Load Rtail, tail
 Store (Rtail), x
 Rtail=Rtail+1
 Store tail, Rtail

Consumer:
 Load Rhead, head
spin: Load Rtail, tail
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store head, Rhead

 process(R)

What is wrong with this code?

tail head
Producer

Rtail

Consumer
1

R   Rhead

Rtail   

Consumer
2

R   Rhead

Rtail   

The same item may get consumed 
by both consumers!

Critical section:
Needs to be executed atomically 
by one consumer  locks
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Locks or Semaphores
E. W. Dijkstra, 1965

Lock s has two values:

◼ Unlocked (s=0): means that no process has the lock

◼ Locked (s=1): means that exactly one process has 
the lock and it can access the critical section

Once a process successfully acquires a lock, it  
executes the critical section and then sets s to 
zero by releasing the lock

The execution of the critical 
section is protected by locks; 
Only one process can hold the 
lock at a time

Process i 
acquire(s)
    <critical section>
release(s)

Implementing locks is quite difficult; ISAs provide 
special atomic instructions to implement locks
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Atomic read-modify-write 
instructions

Test&Set m, R: 
R   M[m];
if  R==0 then  

 M[m]  1;

Swap m, R: 
Rt   M[m];
M[m]  R;
R   Rt;

m is a memory location, R is a register

Location m can be set to one 
only if it contains a zero; the 
old value is returned in R

Location m is first read and 
then set to the new value; the 
old value is returned in R
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Multiple Consumers 
Example using the Test&Set Instruction

Critical
Section

lock:   Test&Set mutex, Rtemp

  if (Rtemp==1) goto lock
  Load Rhead, head
spin:  Load Rtail, tail
  if Rhead==Rtail goto spin
  Load R, (Rhead)
  Rhead=Rhead+1
  Store head, Rhead 
unlock: Store mutex, 0
   process(R)

A consumer acquires the lock (mutex) before 
reading the head value 
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Synchronization and 
Concurrency
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T1 is active and executing code inside its critical section.  

T2 is active and executing code outside its critical section.

T3 is active and executing code outside its critical section.

T4 is blocked and waiting to get into its critical section. 

◼ (It will get in once the lock is released by T1).

Critical section Critical section Critical section Critical section 

T1 T2 T3 T4 



Programming Challenges

How to decide what part of code is the 

“critical section”?

◼ What happens if critical section is too large?

Our example was written assuming that the 
instructions per thread are executed in order

◼ An architecture may execute instructions out of order to 
gain higher performance

                 Gives rise to memory model issues
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Implementation Challenges

Atomic instructions (read-modify-write) are 

quite disruptive in pipelined machines

What if the process stops or is swapped out 
while in the critical section?

◼ Lock may never get released! Every thing stops

◼ More sophisticated programming is needed to deal with 
such eventualities
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Focus of Today’s Lecture

Supporting Multi-threaded 
Programming

◼ Synchronization

◼ Sequential Consistency
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Memory Ordering Nuances
Concurrent tasks: T1, T2
Shared variables: X, Y (initially X = 0, Y = 0)

T1:    T2:
Store X, 1    (X =  1)       Load R1, Y 
Store Y, 2     (Y = 2)       Store Y’, R1    (Y’= Y)
          Load R2, X 
          Store X’, R2    (X’= X)

What are the legitimate answers for X’ and Y’ ?

 (X’,Y’)  {(1,2), (0,0), (1,0), (0,2)}  ?

If y is 2 then x cannot be 0
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Sequential Consistency
A Memory Model

“A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential 
order, and the operations of each individual processor
appear in the order specified by the program”
      Leslie Lamport

Sequential Consistency = 
 arbitrary order-preserving interleaving
 of memory references of sequential programs

M

P P P P P P
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Why SC may be violated
Sequential consistency imposes more memory ordering 
constraints than those imposed by uniprocessor 
program dependencies (     )
      What are these in our example ?

T1:    T2:
Store X, 1     (X =  1)       Load R1, Y 
Store Y, 2      (Y = 2)       Store Y’, R1     (Y’= Y)
          Load R2, X 
          Store X’, R2     (X’= X)

additional SC requirements (        )

High-performance processor implementations often 
violate SC by not enforcing the extra dependencies  
required by SC

Example Store Buffers
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Store Buffers
A processor considers a Store to have 
been executed as soon as it is stored 
in the Store buffer, that is, before it is 
put in memory

A load can read values from the  local 
store buffer (forwarding)

P

Memory

P

Loads/Stores can appear to be ordered 
differently to other processors  
                                       ==> violate SC

Some systems only enforce FIFO ordering for 
the stores to the same address while
moving a store from store buffer to memory
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• Sequential consistency:

• With FIFO store buffers:

• With non-FIFO store buffers:

  Process 1   Process 2 

  Store X, 1;   Load R1, Y; 

 Store Y, 2;   Load R2, X; 

Violations of SC
Example 1

Question:  Is it possible that  R1=2 but R2=0?

No

No
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Yes

Initially, all memory 

locations contain zeros



• Sequential consistency:

• Suppose Stores don’t leave the store buffers before 
the Loads are executed: 

  Process 1   Process 2 

  Store X, 1;   Store Y, 2;

  Load R1, Y;   Load R2, X; 

Violations of SC
Example 2

Initially, all memory 

locations contain zeros

Question:  Is it possible that R1=0 and R2=0?

No

Yes !
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A Practical Producer-
Consumer Example continued

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 Rtail=Rtail+1
 Store tail, Rtail

Consumer:
 Load Rhead, head
spin: Load Rtail, tail
 if Rhead==Rtail goto spin
 Load R, (Rhead)
 Rhead=Rhead+1
 Store head, Rhead

 process(R)
Can the tail pointer get updated
before the item x is stored?

Programmer assumes that if 3 happens after 2, then 4 
happens after 1.

Problem sequences:
  2, 3, 4, 1
  4, 1, 2, 3

1

2

3

4
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How do we determine which 
sequences are allowed?



Memory Consistency Model

In practice, processors use “weaker” memory 
models than SC

◼ Why?

The “Memory Consistency Model” (aka 
Memory Model) describes what values can be 

returned by load instructions across 
concurrent processes/threads
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TSO: A memory model for 
machines with store buffers  

A store first goes into the Store buffer (SB)

A load reads the youngest corresponding entry from SB 
before reading the memory

A store is dequeued from the SB in FIFO order to update 
the monolithic memory (background rule)

A commit fence stalls local execution until SB is empty

Monolithic memory

…

Processor 

Reg state

Processor 

Reg state

Store
buffer 

Store
buffer 

simple and 
vendor 
independent

St a v

<a,v>

<a,v>

TSO allows loads to overtake stores
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Memory Fences
Instructions to sequentialize memory accesses

Processors which do not support SC memory model provide 
memory fence instructions to force the serialization of 
memory accesses as needed

Producer posting Item x:
 Load Rtail, (tail)
 Store (Rtail), x
 FenceSS

 Rtail=Rtail+1
 Store tail, Rtail

Consumer:
 Load Rhead, (head)
spin: Load Rtail, (tail)
 if Rhead==Rtail goto spin
 FenceLL

 Load R, (Rhead)
 Rhead=Rhead+1
 Store head, Rhead

 process(R)
ensures that tail ptr
is not updated before 
x has been stored

ensures that R is
not loaded before 
x has been stored

RISC-V has one instruction called “fence”
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Memory Model Challenges
Architectural optimizations that are correct for 
uniprocessors, often violate sequential 

consistency and result in a new memory 
model for multiprocessors

Memory model issues are subtle and 
contentious

◼ x86 ISA uses TSO, whose definition is easy to 
understand and unambiguous 

◼ ISAs for ARM, PowerPC etc. use weaker memory 
models and even experts don’t agree on their 
definitions
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SC and Caches
Caches present a similar 
problem as store buffers – 

stores in one cache will 
not be visible to other 
caches automatically

Cache problem is solved 

differently – caches are 
kept coherent 

P

Cache

Memory

P

Cache

How to build coherent caches is the topic of next lecture
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