\Constructive Computer Architecture
‘Multithreaded Programming:

Synchronization and Sequential
Consistency

Thomas — EPFL

Slides adapted from 6.192 Spring '23 with Arvind (MIT) +
contributions from Tushar Krishna (Georgia Tech)

N

April 4, 2024 L12-1

Processes and threads

% Green Thread

N

Code
Data PCB: Process
Control Block
PCB (PC, stack pointer, ..)
l Software
What is SMT? Hardware
Running multiple CPUA| |ICPUB| |CPUC
threads concurrently i .]
on same CPU What is Multiprocessing?

Running multiple threads concurrently over multiple CPUs
April 4, 2024 L12-2

N

Processes and threads

31 % % ¢

Reg| [Regl||Reg Reg Reg Reg "Software"
+ + || + + + +
PC| | PC|| PC PC PC PC
Data||Code
What is SMT? ‘ “Hardware
Running multiple CPUA| |ICPUB| |CPUC

threads concurrently

on same CPU

April 4, 2024

What is Multiprocessing?

% Thread

Running multiple threads concurrently over multiple CPUs

L12-3

Symmetric Multiprocessors

N

Processor ° o o Processor
+ cache + cache

Processor-Memory Interconnect

bridge
|

I/O Interconnect

I/O controller || I/O controller || I/O controller
All memory is | |

equally accessible to all

Memory

|
— <= | output

processors Graphics
® Any processor can do any
I/O operation Networks

April 4, 2024 L12-4

N

Processor * ¢
+ cache

Memory

In modern Systems-on-a-Chip
(50C) there are many processors
to perform specific functions;
they are programmed in an ad-
hoc manner

April 4, 2024

Heterogeneous Systems

Processor
+ cache

Processor-Memory Interconnect
|

bridge minions
|

I/O Interconnect

Proc + Mem

Proc + Mem Proc + Mem

e

e

[« ¢

v’

Graphics
output

Networks
L12-5

Multithreaded Programming

Multiple independent sequential threads which
compete for shared resources such as memory
and I/0 devices

= usually managed by the operating system
= OS often runs multiple threads for efficient
management of resources even on a single processor

Multiple cooperating sequential threads, which
communicate via the shared memory system,
i.e., shared data structures

= an application can often be completed faster by
decomposing it into multiple threads and running
them on multiprocessors

N

April 4, 2024 L12-6

Focus of Today’s Lecture

#®Supporting Multi-threaded
Programming
= Synchronization
» Sequential Consistency

April 4, 2024 L12-7

Focus of Today’s Lecture

#®Supporting Multi-threaded
Programming
= Synchronization
» Sequential Consistency

April 4, 2024 L12-8

Synchronization

)
N . . .
Need for synchronization arises

threads in a system

s Forks and Joins: A parallel
process/thread may want to wait until
several events have occurred

s Producer-Consumer: A consumer
process/thread must wait until the
producer process has produced data

s Mutual Exclusion: Operating system has
to ensure that a resource is used by only
one process/thread at a given time

April 4, 2024

whenever there are parallel processes or

P1

1

.

| !

producer

A

y

consumer

A

y

L12-9

Thread-safe programming

‘& Multithreaded programs can be executed on a
uniprocessor by timesharing

= Each thread is executed for a while (timer interrupt)
and then the OS switches to another thread,
repeatedly
#® Thread-safe multithreaded programs behave
the same way regardless of whether they are
executed on multiprocessors or a single
processor

N

In the rest of lecture we will assume that each
thread has its own processor to run

April 4, 2024 L12-10

example: Producer-Consumer
communicate via a FIFO

N

Producer

Rtail

tail

head

RtaiI I Rhead R
'~ Assume unbounded FIFO

Producer posting Item x:

Load R, tail
Store (Rei), X

deSTGddP,/ﬁq;;ﬁiww+1

In areg Store tail, Ry
destaddr

April 4, 2024

src addr spin:

Consumer:

Load Ry..q, head

Load R, tail

if Rhead==RtaiIgOto spin
Load R, (Rhead)

Rhead = Rhead+ 1

Store head, Ry .4
process(R)

L12-11

Multithreaded programming
IS subtle

‘ tail head
Producer

N

Reaii || Reail Rtail I Rhead || R
Producer posting Item x: Consumer:
Load R, tail Load Ry..q, head

e 1 Store (Rey), X T spin: Load R, tail
Rtail'=RtaiI+1 § if Rhead==RtaiIgOtO Spin
Store tail, Ry Load R, (Ryeaq)
Ricag=Rheagt+1
What is wrong with this code? Sg(e)arde he“;ajl Ricog
reordering the stores can cause process(R)
the consumer to see stale data

April 4, 2024 L12-12

Multiple Consumers

N

L

tail

Producer

Rtail

head

Producer posting Item x:
Load R, tail
Store (Rei), X
RtaiI=Rtai|+1
Store tail, Rigj

What is wrong with this code?

Critical section:

by one consumer = locks

Needs to be executed atomically

April 4, 2024

Rhead R
Rtail
Rhead R
RtaiI

Consumer:

spin:

Load R, .4, head
Load R, tail

If Rieaq==R¢s;1g0to spin

Load R, (Rhead)
Rhead — Rhead+ 1
Store head, Ryaq
process(R)

L12-13

Locks or Semaphores

E. W. Dijkstra, 1965

N

Process i
acquire(s)
<critical section>
release(s)

The execution of the critical
section is protected by locks;
Only one process can hold the
lock at a time

Lock s has two values:
s Unlocked (s=0): means that no process has the lock

s Locked (s=1): means that exactly one process has
the lock and it can access the critical section

Once a process successfully acquires a lock, it
executes the critical section and then sets s to
zero by releasing the lock

Implementing locks is quite difficult; ISAs provide
special atomic instructions to implement locks

April 4, 2024

L12-14

Atomic read-modify-write
Instructions

m is @ memory location, R is a register

N

Test&Set m, R:
R « M[m]; Location m can be set to one
if R==0 then only if it contains a zero; the
M[m] « 1; old value is returned in R
Swap m, R: Location m is first read and
Ry < M[m]; then set to the new value; the
MIm] < R; old value is returnedin R
R <« Ry;

April 4, 2024 L12-16

Multiple Consumers
Exam ple using the Test&Set Instruction

A consumer acquires the lock (mutex) before
reading the head value

N

L

lock: Test&Set mutex, Riemp
if (Reemp==1) goto lock
Load R, .4, head
spin: | Load Ry, tail »
If Rieaq==Ryz1 GO0 SPin o—— <002/
Load R, (Rhead)
Rhead=Rheadt1
Store head, Ryeaq
unlock: Store mutex, O
process(R)

April 4, 2024

L12-17

Synchronization and
Concurrency

p
\
T1 T2 T3 T4
.| Critical section Critical section Critical section Critical section
—>

T1 is active and executing code inside its critical section.
T2 is active and executing code outside its critical section.
T3 is active and executing code outside its critical section.

T4 is blocked and waiting to get into its critical section.
= (It will getin once the lock is released by T1).

¢ & & &

April 4, 2024 L12-18

Programming Challenges

N

How to decide what part of code is the
“critical section”?
= What happens if critical section is too large?

Our example was written assuming that the
instructions per thread are executed in order

= Anarchitecture may execute instructions out of order to
gain higher performance

= Gives rise fo memory model issues

April 4, 2024 L12-19

Implementation Challenges

N

Atomic instructions (read-modify-write) are
quite disruptive in pipelined machines

What if the process stops or is swapped out
while in the critical section?
= Lock may never get released! Every thing stops

= More sophisticated programming is needed to deal with
such eventualities

April 4, 2024 L12-20

Focus of Today’s Lecture

#®Supporting Multi-threaded
Programming
= Synchronization
» Sequential Consistency

April 4, 2024 L12-21

Memory Ordering Nuances

“Concurrent tasks: T1, T2
Shared variables: X,Y (initially X =0,Y = 0)

N

T1: T2:
StoreX,1 (X= 1) Load Ry, Y
StoreY, 2 (Y=2) StoreY, Ry (Y'=Y)
Load R,, X

Store X, R, (X’=X)

What are the legitimate answers for X’ and Y’ ?

(X5Y") € {(1,2), (0,0), (1,0), (PR} ?

If y is 2 then x cannot be 0

April 4, 2024 L12-22

Sequential Consistency
A Memory Model

L

N

“A system is sequentially consistent if the result of
any execution is the same as if the operations of all
the processors were executed in some sequential
order, and the operations of each individual processor
appear in the order specified by the program”

Leslie Lamport

Sequential Consistency =
arbitrary order-preserving interleaving
of memory references of sequential programs

April 4, 2024 L12-23

Why SC may be violated

p
USequential consistency imposes more memory ordering
constraints than those imposed by uniprocessor
program dependencies (—)
What are these in our example ?
additional SC requirements (——)
T1: T2:
Store X, 1 (X = 1) Load Ry, Y
<.Store Y, 2 (Y =2) <~Store Y, Ry (Y'=Y)
<. Load R,, X
Store X, R, (X'=X)

High-performance processor implementations often
violate SC by not enforcing the extra dependencies

required by SC
Example Store Buffers

April 4, 2024 L12-24

Store Buffers

A processor considers a Store to have P P
been executed as soon as it is stored

|
in the Store buffer, that is, before it is
put in memory —

A load can read values from the local =)
store buffer (forwarding) I

N

Loads/Stores can appear to be ordered
differently to other processors

==> violate SC

Some systems only enforce FIFO ordering for
the stores to the same address while

moving a store from store buffer to memory

April 4, 2024 L12-25

Violations of SC

Example 1
¥
Process 1 Process 2
Store X, 1; Load Ry, Y;
StoreY, 2; Load R,, X;
Question: 1Is it possible that R;=2 but R,=07?

e Sequential consistency: No
o With FIFO store buffers: No

e With non-FIFO store buffers: Yes

Initially, all memory
locations contain zeros

April 4, 2024

L12-26

Violations of SC

) Example 2
<V
Process 1 Process 2
Store X, 1; Store, 2;
Load Ry, Y; Load R,, X;
Question: Is it possible that R,=0 and R,=07?

e Sequential consistency: No

e Suppose Stores don't leave the store buffers before
the Loads are executed: Yes !

Initially, all memory
locations contain zeros

April 4, 2024

L12-27

A Practical Producer-
Consumer Example continued

p
\J
Producer posting Item x: Consumer:
Load R, (tail) Load R;..4, head
1 Store (Re), X spin: Load Ry, tail 3
RtaiI=RtaiI+1 if Rhead==RtaiIgOto Spin
2 Store tail, Ry Load R, (Ryeaq) 4
Rhead = Rhead+ 1
Store head, Ryaq

Can the tail pointer get updated

before the item x is stored? process(R)

Programmer assumes that if 3 happens after 2, then 4
happens after 1.

Problem sequences:
2,3,4,1
4,1,2,3

How do we determine which
sequences are allowed?

April 4, 2024 L12-28

Memory Consistency Model

N

In practice, processors use “weaker” memory
models than SC

The "Memory Consistency Model” (aka
Memory Model) describes what values can be
returned by load instructions across
concurrent processes/threads

April 4, 2024 L12-29

TSO: A memory model for
machines with store buffers

p
1 stav [__Processor __Processor | simple and
& Reg ;C,tate Reg state vendor
L Z .
<a,v>1—h Store Store indepénaent
buffer buffer
\\ I cir . 1
<a,v> Monolithic memory

TSO allows loads to overtake stores

#® A store first goes into the Store buffer (SB)

A load reads the youngest corresponding entry from SB
before reading the memory

A store is dequeued from the SB in FIFO order to update
the monolithic memory (background rule)

#® A commit fence stalls local execution until SB is empty

April 4, 2024 L12-30

Memory Fences

Instructions to sequentialize memory accesses

N

L

Processors which do not support SC memory model provide
memory fence instructions to force the serialization of
memory accesses as needed

: Consumer:
Producer posting Item x:
Load Rtaill (tall) Load Rheadl (head)

Store (Rei), X spin: !'0ad Reai, (tail) i
e, AT
Riaii=Reait1 | oad IiL (Riead)
Store tail, Ry, R _é hiai

head— ™head

Store head, Ry .44
process(R)

ensures that tail ptr
is not updated before
X has been stored

ensures that R is
not loaded before
X has been stored

RISC-V has one instruction called “fence"

April 4, 2024 L12-31

Memory Model Challenges

L

Architectural optimizations that are correct for
uniprocessors, often violate sequential
consistency and result in a new memory
model for multiprocessors

Memory model issues are subtle and
contentious
s X86 ISA uses TSO, whose definition is easy to
understand and unambiguous

s ISAs for ARM, PowerPC etc. use weaker memory
models and even experts don’t agree on their
definitions

N

April 4, 2024 L12-32

SC and Caches

Caches present a similar
P P

problem as store buffers -

stores in one cache will I I

not be visible to other

caches automatically Cache Cache
Cache problem is solved I I

differently — caches are I

kept coherent

Memory

How to build coherent caches is the topic of next lecture

April 4, 2024 L12-33

	Slide 1
	Slide 2: Processes and threads
	Slide 3: Processes and threads
	Slide 4: Symmetric Multiprocessors
	Slide 5: Heterogeneous Systems
	Slide 6: Multithreaded Programming
	Slide 7: Focus of Today’s Lecture
	Slide 8: Focus of Today’s Lecture
	Slide 9: Synchronization
	Slide 10: Thread-safe programming
	Slide 11: Example: Producer-Consumer communicate via a FIFO
	Slide 12: Multithreaded programming is subtle
	Slide 13: Multiple Consumers
	Slide 14: Locks or Semaphores E. W. Dijkstra, 1965
	Slide 16: Atomic read-modify-write instructions
	Slide 17: Multiple Consumers Example using the Test&Set Instruction
	Slide 18: Synchronization and Concurrency
	Slide 19: Programming Challenges
	Slide 20: Implementation Challenges
	Slide 21: Focus of Today’s Lecture
	Slide 22: Memory Ordering Nuances
	Slide 23: Sequential Consistency A Memory Model
	Slide 24: Why SC may be violated
	Slide 25: Store Buffers
	Slide 26: Violations of SC Example 1
	Slide 27: Violations of SC Example 2
	Slide 28: A Practical Producer-Consumer Example continued
	Slide 29: Memory Consistency Model
	Slide 30: TSO: A memory model for machines with store buffers
	Slide 31: Memory Fences Instructions to sequentialize memory accesses
	Slide 32: Memory Model Challenges
	Slide 33: SC and Caches

